

Page 1 of 41
CONFIDENTIAL

REPORT

Security Assessment of Delta Chat’s Primary Rust Libraries
on behalf of the Open Technology Fund

Page 2 of 41
CONFIDENTIAL

REPORT

TABLE OF CONTENTS
TABLE OF CONTENTS... 2

EXECUTIVE SUMMARY .. 4

Scope and Methodology ... 4

Assessment Objectives ... 4

Findings Overview .. 4

Next Steps ... 4

ASSESSMENT RESULTS .. 5

INTRODUCTION ... 6

CRITICAL-RISK FINDINGS ... 8

HIGH-RISK FINDINGS ... 8

MEDIUM-RISK FINDINGS ... 8

M1: Cleartext Transmission of Security Relevant Information .. 8

M2: Messages, Encryption Keys, and Email Password Stored in Cleartext .. 12

M3: DeltaChat Message Export/Backups Are Unencrypted .. 15

M4: Server-Side Request Forgery (SSRF) .. 17

M5: Social Engineering Attack via Group Messaging UI ... 20

M6: File Transfers Do Not Validate Filetypes ... 22

LOW-RISK FINDINGS .. 25

L1: Confidential Information in Logs .. 25

L2: Content Security Policy Allows Unsafe-inline ... 26

L3: Potential Denial of Service via Large File Transfer or Large Messages ... 28

L4: Cryptographically Deprecated SHA1 Hashing Algorithm in Use ... 29

L5: Application Build Does Not Employ Position-Independent Executable (PIE) Flag, RELRO, and Stack Cookie
Protections ... 30

L6: Unsafe Dereference Used ... 31

L7: Homograph Attacks Possible in Various Parts of DeltaChat ... 32

L8: UI Alert Does Not Convey Potential for Confidentiality Disruption .. 35

INFORMATIONAL FINDINGS .. 38

Page 3 of 41
CONFIDENTIAL

REPORT

I1: Potential Filesystem Path Traversal Sequence Which Would Allow Arbitrary File Write 38

I2: Additional Security Considerations (Quantum Computing, Traffic Flow Confidentiality, and DeltaChat Attack
Surface Reduction) ... 41

Page 4 of 41
CONFIDENTIAL

REPORT

EXECUTIVE SUMMARY

Scope and Methodology

IncludeSec performed a security assessment of Delta Chat’s Primary Rust Libraries on behalf of the
Open Technology Fund. The assessment team performed a 12 day effort spanning from August 6th –
August 21st, 2020, using a Standard Grey Box Assessment Methodology which included a detailed
review of all the components described above in a manner consistent with the original Statement of
Work (SOW).

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities within
targets in-scope of the SOW. The team assigned a qualitative risk ranking to each finding. IncludeSec
also provided remediation steps which Delta Chat could implement to secure its applications and
systems.

Findings Overview

IncludeSec identified 16 categories of findings. There were 0 deemed a “Critical-Risk,” 0 deemed a
“High-Risk,” 6 deemed a “Medium-Risk,” and 8 deemed a “Low-Risk,” which pose some tangible
security risk. Additionally, 2 “Informational” level findings were identified that do not immediately
pose a security risk.

IncludeSec encourages Delta Chat to redefine the stated risk categorizations internally in a manner that
incorporates internal knowledge regarding business model, customer risk, and mitigation
environmental factors.

Next Steps

IncludeSec advises Delta Chat to remediate as many findings as possible in a prioritized manner and
make systemic changes to the Software Development Life Cycle (SDLC) to prevent further
vulnerabilities from being introduced into future release cycles. This report can be used by Delta Chat
as a basis for any SDLC changes. IncludeSec welcomes the opportunity to assist Delta Chat in improving
their SDLC in future engagements by providing security assessments of additional products.

Page 5 of 41
CONFIDENTIAL

REPORT

ASSESSMENT RESULTS

At the conclusion of the assessment, Include Security categorized findings into four levels of perceived
security risk: critical, high, medium, or low. Any informational findings for which the assessment team
perceived no direct security risk, were also reported in the spirit of full disclosure. The risk
categorizations below are guidelines that IncludeSec believes reflect best practices in the security
industry and may differ from internal perceived risk. It is common and encouraged that all clients
recategorize findings based on their internal business risk tolerances. All findings are described in detail
within the final report provided to Delta Chat.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s
infrastructure and customers. This includes loss of system, access, or application control, compromise
of administrative accounts or restriction of system functions, or the exposure of confidential
information. These threats should take priority during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or
application control, compromise of administrative accounts or restriction of system functions, or the
exposure of confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise
accounts, data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration issues, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover
defense-in-depth and best-practice changes which we recommend are made to the application.

The findings below are listed by a risk rated short name (e.g., C1, H2, M3, L4, I5) and finding title. Each
finding includes: Description (including proof of concept screenshots and lines of code), Recommended
Remediation, and References.

Page 6 of 41
CONFIDENTIAL

REPORT

INTRODUCTION

Project Scoping

On July 13, 2020, the assessment team began analyzing the Delta Chat application for security
vulnerabilities (version 1.39.0). The assessment team focused on the DeltaChat core Rust software and
utilized the Android DeltaChat and Desktop DeltaChat applications for testing. The Electron code of the
DeltaChat and the mobile-specific code from the Android or IOS application were not included in this
assessment but a limited amount of dynamic testing was performed while trying to identify
vulnerabilities in the DeltaChat Rust code and the vulnerabilities identified have been documented.
The source code repositories in-scope in order of priority were:

• deltachat-core-rust

• async-smtp

• async-imap

• async-native-tls

Threat Modeling

The following areas were of key focus during the assessment:

• Correctness – Assessing if the implementation follows its defined specification.

• Backdoors – Assessing if the implementations voluntary or involuntary contain backdoors.
Examples include weak parameters, oracles that can be leveraged to obtain keys or plaintext
and use of non-cryptographically secure pseudo-random number generators.

• Supply Chain Attacks – Assessing if the implementation uses known vulnerable components.

• Ease of Secure Use – Assessing if a user could make mistakes while utilizing the tool that would
allow an attacker to take advantage of them.

• Secrets Management – Assessing how sensitive values are handled.

• Source Code Vulnerabilities – Vulnerabilities that could allow an attacker to abuse to extract
sensitive information or gain remote code execution on the DeltaChat application environment.

Testing Methodology

As RSA, OpenPGP, and Autocrypt have well-defined specifications, prior research regarding known
vulnerabilities was investigated. Dynamic testing and manual source code review were performed to
identify vulnerabilities. The cargo-fuzz and siderophile framework were used sparingly to identify run-
time vulnerabilities but because of time restrictions, additional testing and time would be necessary to
fully leverage this testing strategy. Appropriate proofs-of-concept were developed to verify discovered
findings. Please also note that the level of depth of attacks was limited by the time-boxed nature of the
assessment (11 total workdays).

https://github.com/deltachat/deltachat-core-rust
https://github.com/async-email/async-smtp/
https://github.com/async-email/async-imap/
https://github.com/async-email/async-native-tls

Page 7 of 41
CONFIDENTIAL

REPORT

Suggested Future Areas of Investigation
The assessment team recommends performing additional testing coverage on the following areas:

• Desktop DeltaChat Electron source code

• DeltaChat Android and IOS specific code repositories

References
PKCS #1: RSA Cryptography Specifications Version 2.2
RFC 4880 – OpenPGP Message Format
Twenty Years of Attacks on the RSA Cryptosystem
Autocrypt
DeltaChat

https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://crypto.stanford.edu/~dabo/pubs/papers/RSA-survey.pdf
https://autocrypt.org/
https://github.com/deltachat/

Page 8 of 41
CONFIDENTIAL

REPORT

CRITICAL-RISK FINDINGS

No “Critical-Risk” findings were identified during the course of the engagement.

HIGH-RISK FINDINGS

No “High-Risk” findings were identified during the course of the engagement.

MEDIUM-RISK FINDINGS

M1: Cleartext Transmission of Security Relevant Information

Description:

The DeltaChat application sends potentially confidential information over a cleartext channel,
including initial chat messages, registration HTTP requests, and email credentials. Cleartext credentials
are only sent if the client is misconfigured (i.e. IMAP/SMTP encryption is turned off). However, if
misconfigured, information traveling this way is susceptible to a man-in-the-middle attack, in which the
data is intercepted by an attacker situated anywhere along the network path between the user and the
target server. The attacker could be on the local area network, the corporate network, within the ISP,
etc. If an attacker were to intercept and modify information submitted by the user or returned by the
application, then an attacker could potentially read out initial messages, prevent an encrypted
transport channel from being established, steal email credentials and modify registration requests.
While the application warns the user that the initial messages could not be encrypted there could be
improvements to notify the user when key material has been exchanged. For example, the send
(arrow) button currently does not indicate whether a message will be sent encrypted or not but could
be upgraded to show a lock symbol after key material has been successfully exchanged as improved
security-focused UI/UX.

While the assessment team understands that in some circumstances unencrypted mediums are design
decisions, as a defense-in-depth approach, the assessment team recommends removing unencrypted
features (e.g. HTTP QR codes, SMTP login, etc.) and providing additional notifications around the initial
establishment of PGP key material. The DeltaChat application also supports disabling certificate
verification for IMAP/SMTP. Removing support for this feature would also prevent users from
accidentally misconfiguring their client.

Affected Locations

• src/qr.rs

• src/login_param.rs

Steps to Reproduce (QR HTTP Registration)

1. Go to https://www.the-qrcode-generator.com/.

https://www.the-qrcode-generator.com/

Page 9 of 41
CONFIDENTIAL

REPORT

2. Enter DCACCOUNT:http://includesecurity.com.
3. Right-click and save the image.
4. Start Wireshark and capture on the network interface.
5. Deauthenticate if already authenticated and click the top right settings button and then Switch

Account.
6. Click Scan QR Code on bottom of Delta Welcome Chat Page.
7. Open created QR file.
8. Notice that an HTTP request is sent unencrypted to http://includesecurity.com.

Steps to Reproduce (Initial Unencrypted Messages)

1. Create an email account and authenticate via DeltaChat application
2. Scan a QR code to add a DeltaChat user.
3. Send some messages to the DeltaChat user.
4. Authenticate into the email service and notice that the initial messages were not sent

encrypted.

Steps to Reproduce (IMAP/SMTP Unencrypted)

1. Open the DeltaChat application.
2. Configure the email address to bob@comcast.net and the password to password123.
3. Use the following configurations for IMAP:

(Inbox)
login name = bob
IMAP server = mail.comcast.net
IMAP port = 143
IMAP security = off

(Outbox)
SMTP login name = bob
SMTP password = password123
SMTP server = mail.comcast.net
SMTP port = 25
SMTP security = off

1. Open Wireshark and capture on the network interface.
2. Click Login in DeltaChat application.
3. Notice that Wireshark shows that the DeltaChat application tries to authenticate to

mail.comcast.net via IMAP on port 143 using the configured username and password.

The following is an initial conversation where the initial messages were not encrypted:

<pre>brockefella509@gmail.com

 Wed, Jul 8, 11:38 PM (9 days ago)
Secure-Join: vc-request
brockefella509@gmail.com

http://includesecurity.com/
http://includesecurity.com/

Page 10 of 41
CONFIDENTIAL

REPORT

 Wed, Jul 8, 11:38 PM (9 days ago)
hi buddy
brockefella509@gmail.com

 Wed, Jul 8, 11:39 PM (9 days ago)
hi buddy2
brockefella509@gmail.com

 Wed, Jul 8, 11:39 PM (9 days ago)
Secure-Join: vc-request
brockefella509@gmail.com

 Wed, Jul 8, 11:39 PM (9 days ago)
yo
brockefella509@gmail.com

 Wed, Jul 8, 11:39 PM (9 days ago)
aaaa
brockefella509@gmail.com

 Wed, Jul 8, 11:40 PM (9 days ago)
ffff
brockefella509@gmail.com

 Wed, Jul 8, 11:40 PM (9 days ago)
ddddd
Mark

Wed, Jul 8, 11:41 PM (9 days ago)

to me
Secure-Join: vc-request
</pre>

The following is a screenshot of a registration request via a DCACCOUNT QR code registration
unencrypted over HTTP to http://includesecurity.com.

http://includesecurity.com/

Page 11 of 41
CONFIDENTIAL

REPORT

The following screenshots show authentication into an email address over SMTP via an unencrypted
connection:

Page 12 of 41
CONFIDENTIAL

REPORT

The following screenshot shows a network capture of the username and password being sent in
cleartext.

Recommended Remediation:

While the assessment team understands that many of these unencrypted mediums are design
decisions to allow a greater number of users to utilize the client, by supporting unencrypted
transmission of sensitive information the DeltaChat client introduces additional risk to the tool and
potentially to unsuspecting users. The assessment team recommends protecting sensitive information
such as credentials from eavesdropping by removing support for unencrypted protocols such as
HTTP/IMAP/SMTP and using transport layer security mechanisms such as HTTPS/IMAPS/etc for the
affected application areas. In addition, removing support for disabling TLS certificate verification.

The assessment team also recommends modifying the Send button to include a lock icon after the
successful establishment and verification of key material. In addition, showing an unlock icon within
the send button upon the initial key material establishment and verification could help indicate to the
user that they are about to send an unencrypted message.

References:

OWASP Top 10 2010-A9-Insufficient Transport Layer Protection
Transport Layer Protection Cheat Sheet

M2: Messages, Encryption Keys, and Email Password Stored in Cleartext

Description:

The DeltaChat application stores messages, encryption keys, and email passwords in cleartext. The
DeltaChat application utilizes a sqlite3 database for storing messages and other sensitive information.
If this database file were recovered, an attacker could retrieve DeltaChat messages, encryption keys,
contact information, geolocation data, security tokens, and other security-relevant data. Mobile
application backups such as Android and iPhone are stored in the cloud. These application backups
could have sensitive information and could be retrieved by law enforcement or advanced persistent

https://www.owasp.org/index.php/Top_10_2010-A9-Insufficient_Transport_Layer_Protection
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#SSL_vs._TLS

Page 13 of 41
CONFIDENTIAL

REPORT

threat (APT) adversaries with backend cloud access. Note that Google added an optional key
encryption protection for backups that can be leveraged with some mobile devices that would help
mitigate the retrieval of cloud data.

Note from Delta Chat Team:
“On Android and iOS you typically get device encryption and even on Desktop devices it's more
common. It's what we typically recommend to our users — don't just protect your chat data, protect
your whole account. See the related Autocrypt specification note on this:”

Secret Key Protection at Rest

Affected Locations

• deltachat-core-rust/src/sql.rs

• /home/user/.config/DeltaChat/accounts/ac1/db.sqlite

Steps to Reproduce (DeltaChat Linux Desktop Application)

1. Setup DeltaChat and start chatting with another DeltaChat user.
2. Change the directory to the application directory.

cd /home/user/.config/DeltaChat/accounts/ac1

3. Open with sqlite3 database file:

sqlite3 db.sqlite

4. Display the database tables:

.tables

5. Read information from the tables:

select * from msgs;

6. Notice that the messages are stored in cleartext.

Steps to Reproduce (DeltaChat Android Application)

1. Install Genymotion, Android Emulator or utilize a Rooted Android Device.
2. Install DeltaChat and start chatting with another DeltaChat user.
3. Initialize adb as root:

adb root

4. Download the application data:

https://autocrypt.org/level1.html#secret-key-protection-at-rest

Page 14 of 41
CONFIDENTIAL

REPORT

adb pull [directory of mobile application on device] ./

5. Find the sqlite3 database file and open the file:

sqlite3 db.sqlite

6. Display the tables:

.tables

5. Read information from the tables:

select * from msgs;

6. Notice that the messages are stored in cleartext.

The following screenshot displays an encrypted message exchange with the DeltaChat Mobile
application:

The next screenshot shows that the sqlite3 database file can be retrieved from the Android device and
are not encrypted.

Page 15 of 41
CONFIDENTIAL

REPORT

Notice that the test123 and 9999999 messages are sent by the mobile application encrypted (i.e. have
the lock icon) and is located in the sqlite3 database unencrypted in cleartext.

Recommended Remediation:

The assessment team recommends encrypting the database content with AES-256-GCM128 or a similar
encryption mode and deriving a strong symmetric private key. A symmetric private key could be
generated by utilizing a user password and a key derivation function (KDF) like PBKDF2 or Scrypt. Some
mobile devices support hardware security modules that could be used to create and store encryption
keys that can be accessed by passwords or biometric information. By leveraging a strong encryption
key and a strong encryption algorithm, it would make it difficult for an attacker to decrypt the contents
of the messages or retrieve sensitive information. Encrypted user information would also help protect
mobile backups and lost or the information on stolen devices.

References:

Salt and Hash Password with PBKDF2
Rust Crypto
Rust Encryption

M3: DeltaChat Message Export/Backups Are Unencrypted

Description:

https://rust-lang-nursery.github.io/rust-cookbook/cryptography/encryption.html#salt-and-hash-a-password-with-pbkdf2
https://docs.rs/rust-crypto/0.2.36/crypto/
https://rust-lang-nursery.github.io/rust-cookbook/cryptography/encryption.html

Page 16 of 41
CONFIDENTIAL

REPORT

The DeltaChat application creates backups that are unencrypted. If an attacker were able to gain
access to a DeltaChat backup file, then the attacker could read messages and message information
from a targeted user. While the DeltaChat application does provide guidance to store the backup file in
a secure location, users could ignore or not understand the impact of this advice and fall prey to a
situation where the expectation of confidentiality is disrupted.

Affected Location

• deltachat-core-rust/src/imex.rs

Steps to Reproduce

1. Click the top left-hand corner button.
2. Click Settings.
3. Scroll down to the bottom and click Export Backup.
4. Select a directory to output the file.
5. Run the file command on the backup file and notice that the file is a sqlite3 database file.
6. Install the SQLite database application if the application is not already installed (e.g. sudo apt-

get install sqlite).
7. Open the backup database file with sqlite (i.e. sqlite3 delta-chat-2020-07-17-0.bak).
8. View all messages (i.e. select * from msgs;).

The following is an example set of commands demonstrating this issue:

file delta-chat-2020-07-17-0.bak
delta-chat-2020-07-17-0.bak: SQLite 3.x database, last written using SQLite version 3031001

sqlite3 delta-chat-2020-07-17-0.bak

sqlite> .tables
acpeerstates chats_contacts devmsglabels leftgrps msgs_mdns
backup_blobs config jobs locations tokens
chats contacts keypairs msgs

sqlite> select * from msgs
 ...> ;
|c=1
r=1|0|1594248300|1594248302|0||<Gr.J3jX6ORtCky.C3fGQFl4FOS@dubby.org>|<Gr.J3jX6ORtCky.aX5iykc0FrE@deltachat
.de> <Gr.J3jX6ORtCky.C3fGQFl4FOS@dubby.org>|1|0|
40|Gr.J3jX6ORtCky.VOVDJGhX2iq@dubby.org||0|13|1|0|1594248331|10|26|1|0|yup. good to meat you digitally
holger||c=1|0|0|0|0||Gr.J3jX6ORtCky.XGFgkl_23_N@deltachat.de|<Gr.J3jX6ORtCky.aX5iykc0FrE@deltachat.de>
Gr.J3jX6ORtCky.XGFgkl_23_N@deltachat.de|1|0|
41|Gr.J3jX6ORtCky.nBPuSdDHpwT@deltachat.de|DeltaChat|7|13|10|1|1594248331|10|16|1|0|you can change your
display name in your profile settings.|Re: Sec-Review2

Notice that the messages, while encrypted in transit, are not encrypted in the backup sqlite3 database
file.

Recommended Remediation:

Page 17 of 41
CONFIDENTIAL

REPORT

The assessment team recommends implementing encrypted backups. Encrypted backups could
leverage AES-256-GCM-128 and a strong password (or device generated that the user could write
down) and a key derivation algorithm PBKDF2 or scrypt. For ease of use, a user should use a strong
password (or device generated key), and the PBKDF2 or scrypt algorithms can be leveraged to generate
a symmetric encryption key that can be used to encrypt the database file.

References:

PBKDF2 Wikipedia
Scrypt Wikipedia
Rust Crypto Crate

M4: Server-Side Request Forgery (SSRF)

Description:

A Server-Side Request Forgery (SSRF) issue was discovered in the DeltaChat application. SSRF issues
occur when a user can supply a hostname or URL to the server which will cause the server to make a
request to that host. Attackers can use SSRF vulnerabilities to attack or probe internal network services
that are available to the server (but not available externally on the Internet) to attack other services on
the Internet or cause requests from the server to be made into an attacker-controlled server enabling
the attacker to control the response. An SSRF could also be leveraged against DeltaChat users to de-
anonymize their identity or attack services on localhost (e.g. 127.0.0.1).

Affected Location

• deltachat-core-rust-master/src/qr.rs

The following source code demonstrates this issue.

189 /// scheme: `DCACCOUNT:https://example.org/new_email?t=1w_7wDjgjelxeX884x96v3`
190 fn decode_account(_context: &Context, qr: &str) -> Lot {
191 let payload = &qr[DCACCOUNT_SCHEME.len()..];
192
193 let mut lot = Lot::new();
194
195 if let Ok(url) = url::Url::parse(payload) {
196 if url.scheme() == "https" {
197 lot.state = LotState::QrAccount;
198 lot.text1 = url.host_str().map(|x| x.to_string());
199 } else {
200 lot.state = LotState::QrError;
201 lot.text1 = Some(format!("Bad scheme for account url: {}", payload));
202 }
203 } else {
204 lot.state = LotState::QrError;
205 lot.text1 = Some(format!("Invalid account url: {}", payload));
206 }
207
208 lot

https://en.wikipedia.org/wiki/Pbkdf2
https://en.wikipedia.org/wiki/Scrypt
https://docs.rs/rust-crypto/0.2.36/crypto/

Page 18 of 41
CONFIDENTIAL

REPORT

209 }
...
217 /// take a qr of the type DC_QR_ACCOUNT, parse it's parameters,
218 /// download additional information from the contained url and set the parameters.
219 /// on success, a configure::configure() should be able to log in to the account
220 pub async fn set_config_from_qr(context: &Context, qr: &str) -> Result<(), Error> {
221 let url_str = &qr[DCACCOUNT_SCHEME.len()..];
222
223 let response: Result<CreateAccountResponse, surf::Error> =
224 surf::post(url_str).recv_json().await;
225 if response.is_err() {
226 bail!("Cannot create account, request to {} failed", url_str);
227 }
228 let parsed = response.unwrap();
229
230 context
231 .set_config(Config::Addr, Some(&parsed.email))
232 .await?;
233 context
234 .set_config(Config::MailPw, Some(&parsed.password))
235 .await?;
236
237 Ok(())
238 }

Steps to Reproduce

1. Go to https://www.the-qrcode-generator.com/.
2. Enter DCACCOUNT:http://127.0.0.1:6379.
3. Right-click and save the image.
4. Start python webserver.

mkdir ./tmp/ && cd ./tmp && python3 -m http.server 6379

5. Deauthenticate if already authenticated by clicking the top right settings button and clicking Switch
Account.
6. Click Scan QR Code on bottom of Delta Welcome Chat Page
7. Open the created QR file.
8. Notice that a request is sent to http://127.0.0.1:6379.

https://www.the-qrcode-generator.com/
http://127.0.0.1:6379/
http://127.0.0.1:6379/

Page 19 of 41
CONFIDENTIAL

REPORT

The following screenshots demonstrate this issue:

The result of opening the QRCode generated the following HTTP request:

python -m http.server 6379
Serving HTTP on 0.0.0.0 port 6379 (http://0.0.0.0:6379/) ...
127.0.0.1 - - [17/Jul/2020 14:44:26] code 501, message Unsupported method ('POST')
127.0.0.1 - - [17/Jul/2020 14:44:26] "POST / HTTP/1.1" 501 -

Recommended Remediation:

Whenever possible, do not trust user-controllable URLs when web requests need to be made by the
server to other services. The code should not be allowed to make requests to internal network hosts or
localhost, even via redirects from external hosts. If user-controllable URLs must be requested, then
sanitizing them in a manner similar to the SafeCurl library is recommended (see the link in the
reference section).

Page 20 of 41
CONFIDENTIAL

REPORT

Additionally, a whitelist of acceptable characters could be created and support for HTTPS could be
mandated.

References:

Safecurl Libraries
Paranoid Request

M5: Social Engineering Attack via Group Messaging UI

Description:

The assessment team identified a potential social engineering attack whereby an attacker could trick
one user into believing they are another via cleverly named DeltaChat group. In this case, an attacker
who can learn the name of a user and their user icon could create a group with the name of the target
and invite another targeted user to the chat to potentially impersonate and disrupt expected
confidentiality. While this attack could be detected by a user by right-clicking on the group name or by
clicking on the top middle part of the GUI after selecting the group, it is possible that the user would
not realize that they are sending information to a group before it is too late.

Steps to Reproduce

1. Initialize a chat with a user named Bob.
2. Download Bob's chat icon.
3. Create a group chat named Bob.
4. Set the group chat icon to Bob's icon.
5. Invite a user named Alice to the Group chat.
6. Wait for Alice to send an unsuspecting message to the group chat named Bob.

The following screenshot is an example of creating a Group named holger and utilizing holger's icon to
socially engineer a test user Brock from the test user Mark.

https://github.com/includesecurity/
https://github.com/Uber-common/paranoid-request

Page 21 of 41
CONFIDENTIAL

REPORT

If a user knows the DeltaChat application well, they might be able to see that the top middle of the
application says, 2 members. However, a small oversight might allow an attacker to steal some
information.

Recommended Remediation:

The assessment team recommends changing the user interface to more easily discern whether a chat
entity is a group or an individual. This could help prevent related social engineering attacks.

References:

Twitter Social Engineering Attack Security Incident
Social Engineering Wikipedia

https://blog.twitter.com/en_us/topics/company/2020/an-update-on-our-security-incident.html
https://en.wikipedia.org/wiki/Social_engineering_%28security%29

Page 22 of 41
CONFIDENTIAL

REPORT

M6: File Transfers Do Not Validate Filetypes

Description:

The assessment team found that the DeltaChat application can be used to transfer files. The files sent
are organized in a panel that separates them by images, video, audio or documents. The filetypes or
content of the files are not validated, which allows an attacker to trick a user by renaming a file's
extension. Files are automatically written to the filesystem when transferred and could result in file
attacks on the operating system or lead to de-anonymization attacks.

Steps to Reproduce (file transfer filetype mismatch)

1. Download and install the DeltaChat desktop application.
2. Authenticate into the application with an email.
3. Begin communication with another user.
4. Create a file where the content does not match its extension such as test123.jpg.
5. Send the file using the DeltaChat application.
6. Notice that the file is stored in the images section of the DeltaChat client but the file is not a

valid JPG image.

The following image shows the results of transferring and displaying a JPG file that is not actually a JPG
file:

Steps to Reproduce (transferring a file with UTF-8 characters in the name)

1. Download and install the DeltaChat desktop application
2. Login to the application with an email
3. Begin communication with another user
4. Create a file that includes UTF-8 characters in the name
5. Transfer the file to a user
6. Notice that the transferred file was stored on the filesystem and contains UTF-8 characters

Page 23 of 41
CONFIDENTIAL

REPORT

Steps to Reproduce (de-anonymization with AVI file and Kmplayer)
1. Download and install the DeltaChat desktop application.
2. Authenticate into the application with an email.
3. Begin communication with another user.
4. Create a file that includes the following content and name it test.avi:

#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXTINF:10.0,
http://incudesecurity.com
#EXT-X-ENDLIST

5. Install kmplayer on Linux

sudo apt-get install kmplayer

6. Transfer the file to a user.
7. Open the AVI file that was transferred.
8. Notice that a request was made to includesecurity.com.
9. Note that depending on the operating system, applications installed and the filename, there are
ways to cause applications to send remote requests that could cause de-anonymization, credential
theft, or in some cases remote code execution. Sometimes, it is not required that the user opens the
file (e.g. Windows LNK vulnerabilities, Evince PDF viewer thumbnail vulnerabilities, Android Stagefright
Vulnerability, Microsoft Windows Defender vulnerabilities, etc.)

Page 24 of 41
CONFIDENTIAL

REPORT

In this case a user would need to double click the AVI file from within the DeltaChat application and
have kmplayer installed. The assessment team is certain that there are many other ways that this could
be done. For example, there are some cases on Windows when a file hits disk Windows can
automatically send out a network call to an SMB service remotely. If a user's firewall rules allow
outgoing SMB, then that could disclose SMB hashes.

Recommended Remediation:

The assessment team recommends implementing the following in order of priority:

1. Verify that the magic bytes of the file (first several bytes) match the extension or utilize the
magic bytes of the file to denote the filetype.

2. If a secure communication channel has been established between two users, then do not
accept attachments that are sent unencrypted via email from the user who has established a
secure communication.

3. In cases where an active man-in-the-middle (MitM) attack could have occurred, then do not
automatically download files to the filesystem as automatically downloading files could result in
de-anonymization attacks or allow an attacker to launch exploits via operating system file
parsing issues or allow for social engineering attacks.

4. Do not allow UTF-8 characters or special characters (e.g. `, %, ', #) in filenames that are being
transferred.

5. Do not automatically parse untrusted KML files.
6. Notify the user before transferring files especially if PGP key material has changed. For

example, “The user [insert_username] wants to transfer you a file but the PGP public keys have
changed. Would you like to allow this file transfer?”

7. Create a maximum size for filenames and do not allow filenames to transfer that are greater
than a certain length.

Please note that the above-recommended remediation steps are a “practical” recommendation. A
more complete solution would be more complete and correct in the file format checking to avoid
corkami inspired filetype attacks.

References:

List of File Signatures
Windows LNK Exploit
Project Zero Windows Defender Exploitation
Evince Command Injection Exploit
Stealing Windows Credentials Using Google Chrome
Facebook and FBI De-anonymization Exploit
Stagefright Bug Wikipedia
Email Right to Left Override Aids Email Attacks

https://en.wikipedia.org/wiki/List_of_file_signatures
https://www.rapid7.com/db/modules/exploit/windows/fileformat/cve_2017_8464_lnk_rce
https://bugs.chromium.org/p/project-zero/issues/detail?id=1252&desc=5
https://www.exploit-db.com/exploits/46341
https://www.defensecode.com/whitepapers/Stealing-Windows-Credentials-Using-Google-Chrome.pdf
https://www.vice.com/en_us/article/v7gd9b/facebook-helped-fbi-hack-child-predator-buster-hernandez
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://krebsonsecurity.com/2011/09/right-to-left-override-aids-email-attacks/

Page 25 of 41
CONFIDENTIAL

REPORT

LOW-RISK FINDINGS

L1: Confidential Information in Logs

Description:

Confidential information such as communication times, number of messages, communication email
addresses, and sent emojis are stored in various potentiality unencrypted and/or unintended locations.
These include log files, configuration files, and local storage. Additionally, these locations and not
deleted when ephemeral chat messaging is enabled. If sensitive information is being transmitted and
ephemeral chat mode is enabled, then it would be best practice not to log that information and to not
store emoji information in local storage of the DeltaChat desktop application.

Affected Location

• deltachat-core-rust/src/ephemeral.rs

• /home/user/.config/DeltaChat/config.json

• /home/user/.config/DeltaChat/logs/[name-of-logfile]

Steps to Reproduce (emojis)

1. Install the DeltaChat desktop application.
2. Authenticate and set up a DeltaChat account.
3. Create a secure chat connection with another DeltaChat user.
4. In settings, turn on ephemeral messaging and set ephemeral messages to delete every 1 hour.
5. Send emojis to the user via the chat window.
6. Wait 1 hour.
7. Click ViewDeveloperDeveloper Tools.
8. Click the Local Storage Error! Hyperlink reference not valid. dropdown.
9. Notice that the emojis and number of emojis are stored in local storage and were not deleted.

Steps to Reproduce (log file)

1. Install the DeltaChat desktop application.
2. Run the DeltaChat desktop application and notice the log file that is being used.
3. Authenticate and set up a DeltaChat account.
4. Create a secure chat connection with another DeltaChat user.
5. In settings, turn on ephemeral messaging and set ephemeral messages to delete every 1 hour.
6. Send chat information to another user.
7. Wait 1 hour.
8. Open the log file and notice that the metadata regarding the messages sent to a user is stored

in the log file.

Page 26 of 41
CONFIDENTIAL

REPORT

The following is a screenshot of emojis used when ephemeral messaging is enabled:

Recommended Remediation:

The assessment team recommends not logging metadata when ephemeral messaging is enabled or
removing information when messages are sent. In addition, the assessment team recommends not
storing data in local storage for the DeltaChat desktop application. As additional protection, the
number of messages in the config.js should also not be updated when performing ephemeral
messaging.

References:

Information Exposure Through Log Files

L2: Content Security Policy Allows Unsafe-inline

Description:

The desktop version of the DeltaChat application utilizes Electron for the front-end user interface.
Electron applications run in an un-sandboxed Chromium instance. If an attacker identifies a cross-site
scripting flaw in the Electron application, then it will likely result in remote code execution. Desktop
applications such as Signal Private Messenger, Wire, and Discord have had multiple flaws that would
allow an attacker to achieve remote code execution.

To help mitigate this threat, the desktop DeltaChat application leverages a content security policy (CSP)
and an eval() function deny list. The CSP policy for the desktop application is the following:

<meta http-equiv="Content-Security-Policy" content="default-src 'none';
style-src 'self' 'unsafe-inline';
font-src 'self';
script-src 'self';
worker-src blob: ;
child-src blob: ;
img-src 'self' data: blob: ;

https://cwe.mitre.org/data/definitions/532.html

Page 27 of 41
CONFIDENTIAL

REPORT

media-src 'self';
connect-src https://*.tiles.mapbox.com https://api.mapbox.com https://events.mapbox.com 'self'">

Notice that style-src allows unsafe-inline HTML tags. This could potentially allow an attacker to subvert
CSP protections and achieve HTML injection or cross-site scripting (XSS) if an XSS vulnerability existed.
The connect-src policy also allows a wildcard policy. If an attacker performed a subdomain takeover of
a domain on tiles.mapbox.com, then an attacker could leverage that domain to perform Ajax and
WebSocket communication and potentially exfiltrate sensitive information.

Recommended Remediation:

The assessment team recommends the following steps be taken to improve the CSP. The list below is in
order of ROI priority:

1. Remove unsafe-inline from the CSP policy.
2. Add support for CSP whitelist hashing. This technique will only allow a whitelist of scripts that

have the correct SHA256 hash.
3. Remove the * from the *connect-src "https:// from the connect-src https://.tiles.mapbox.com

policy and only allow a list of trusted domains. This can help mitigate against subdomain
registration or takeover, which is a popular technique when websites do not renew their
domain and/or SSL certificates.

4. Harden the Electron Sandbox security configurations of the Electron Application. This can be
done by making sure nodeIntegration is false, webSecurity is enabled, experimental features is
not enabled, allowPopups is not enabled, Electron framework/NodeJS is up-to-date and
allowRunningInsecureContent is not set to true. Additional recommendations can be found in
the Do Not Enable NodeJS Integration link in the references section.

5. Audit the Electron code for XSS vulnerabilities. The Electron code was out of scope for this
engagement but hardening this code could be helpful in mitigating XSS attacks which may result
in preventing remote code execution vulnerabilities.

6. Add additional Electron/JavaScript functions to the deny list.
7. Remove the developer tools (ViewDeveloperDeveloper Tools) option from the production

release of the application. This could help mitigate against privileged JavaScript functions from
being loaded.

8. Remove or reduce support for UTF-8 where possible.

References:

Locking Down Your Website Scripts With CSP Hashes Nonces and Report URI
Electron Framework Security
Signal Private Messenger RCE Vulnerability
Do Not Enable NodeJS Integration for Remote Content
Preloading Insecurity in Your Electron

https://www.troyhunt.com/locking-down-your-website-scripts-with-csp-hashes-nonces-and-report-uri/
https://blog.doyensec.com/2017/08/03/electron-framework-security.html
https://thehackernews.com/2018/05/signal-messenger-vulnerability.html
https://github.com/electron/electron/blob/master/docs/tutorial/security.md#2-do-not-enable-nodejs-integration-for-remote-content
https://doyensec.com/resources/Asia-19-Carettoni-Preloading-Insecurity-In-Your-Electron.pdf

Page 28 of 41
CONFIDENTIAL

REPORT

L3: Potential Denial of Service via Large File Transfer or Large Messages

Description:

The assessment team noticed that there are limits on the size of outgoing attachments and messages
but there do not appear to be limits on the size of incoming attachments or messages. If an attacker
were to gain control of an email provider or the email messages in transit, then they could potentially
inject large amounts of data to cause a Denial of Service (DOS) on the DeltaChat application.

Note: Creating a from-scratch email server setup to test arbitrarily large attachments was out of scope
for this assessment due to time constraints. That being said, the assessment team consistently sent
large amounts of data via messages and did not notice any of the messages being blocked. As such,
creating a full proof-of-concept is expected to be possible given the time to create a full testing
environment for this scenario.

Affected Location

• deltachat-core-rust/src/dc_receive_imf.rs

The following code sample is where messages can be inserted into the database. The assessment team
did not identify any incoming message size checks or incoming limits.

 710 // fine, so far. now, split the message into simple parts usable as "short messages"
711 // and add them to the database (mails sent by other messenger clients should result
712 // into only one message; mails sent by other clients may result in several messages
713 // (eg. one per attachment))
714 let icnt = mime_parser.parts.len();
715
716 let subject = mime_parser.get_subject().unwrap_or_default();
717
718 let mut parts = std::mem::replace(&mut mime_parser.parts, Vec::new());
719 let server_folder = server_folder.as_ref().to_string();
720 let is_system_message = mime_parser.is_system_message;
721 let mime_headers = if save_mime_headers {
722 Some(String::from_utf8_lossy(imf_raw).to_string())
723 } else {
724 None
725 };
726 let sent_timestamp = *sent_timestamp;
727 let is_hidden = *hidden;
728 let chat_id = *chat_id;
729
730 // TODO: can this clone be avoided?
731 let rfc724_mid = rfc724_mid.to_string();
732
733 let (new_parts, ids, is_hidden) = context
734 .sql
735 .with_conn(move |mut conn| {
736 let mut ids = Vec::with_capacity(parts.len());
737 let mut is_hidden = is_hidden;
738
739 for part in &mut parts {
740 let mut txt_raw = "".to_string();
741 let mut stmt = conn.prepare_cached(

Page 29 of 41
CONFIDENTIAL

REPORT

742 "INSERT INTO msgs \
743 (rfc724_mid, server_folder, server_uid, chat_id, from_id, to_id, timestamp, \
744 timestamp_sent, timestamp_rcvd, type, state, msgrmsg, txt, txt_raw, param, \
745 bytes, hidden, mime_headers, mime_in_reply_to, mime_references, error, ephemeral_timer) \
746 VALUES (?,?,?,?,?,?, ?,?,?,?,?,?, ?,?,?,?,?,?, ?,?, ?,?);",
747)?;

Recommended Remediation:

The assessment team recommends implementing stronger attachment file size and message size
limitations for incoming messages. If large messages need to be sent, then message and attachment
size restrictions could be implemented for non-verified users. Alternatively a global setting, or
individual prompting may be ways to reduce the impact of large file transfers.

References:

Denial of Service Wikipedia

L4: Cryptographically Deprecated SHA1 Hashing Algorithm in Use

Description:

The DeltaChat application supports the SHA1 hashing algorithm as a cryptographic primitive of
OpenPGP for messaging. SHA1 has known cryptographic weaknesses. The current cryptography best
practices recommend the use of the SHA256, SHA384, and SHA512 alternatives.

Affected Location

• deltachat-core-rust/src/pgp.rs

The following source code displays the option of leveraging SHA1:

148 pub(crate) fn create_keypair(
149 addr: EmailAddress,
150 keygen_type: KeyGenType,
151) -> std::result::Result<KeyPair, PgpKeygenError> {
152 let (secret_key_type, public_key_type) = match keygen_type {
153 KeyGenType::Rsa2048 => (PgpKeyType::Rsa(2048), PgpKeyType::Rsa(2048)),
154 KeyGenType::Ed25519 | KeyGenType::Default => (PgpKeyType::EdDSA, PgpKeyType::ECDH),
155 };
156
157 let user_id = format!("<{}>", addr);
158 let key_params = SecretKeyParamsBuilder::default()
159 .key_type(secret_key_type)
160 .can_create_certificates(true)
161 .can_sign(true)
162 .primary_user_id(user_id)
163 .passphrase(None)
164 .preferred_symmetric_algorithms(smallvec![
165 SymmetricKeyAlgorithm::AES256,
166 SymmetricKeyAlgorithm::AES192,

https://en.wikipedia.org/wiki/Denial-of-service_attack

Page 30 of 41
CONFIDENTIAL

REPORT

167 SymmetricKeyAlgorithm::AES128,
168])
169 .preferred_hash_algorithms(smallvec![
170 HashAlgorithm::SHA2_256,
171 HashAlgorithm::SHA2_384,
172 HashAlgorithm::SHA2_512,
173 HashAlgorithm::SHA2_224,
174 HashAlgorithm::SHA1,
175])

Recommended Remediation:

The assessment team recommends removing support for SHA1 as a preferred hashing algorithm.
Removing the SHA1 algorithm would help protect the integrity of messages and prove the origin of the
message (i.e. non-repudiation).

References:

Collision Resistance
Announcing First SHA1 Collision
From Collisions to Chosen Prefix Attacks

L5: Application Build Does Not Employ Position-Independent Executable (PIE) Flag, RELRO,

and Stack Cookie Protections

Description:

The DeltaChat desktop application is not compiled with the position-independent executable (-pie)
flag, RELRO, or stack cookies. This PIE flag will allow operating systems such as Linux to easily
randomize and remap memory regions. Compiling an executable to be position-independent is an
effective security mitigation that can make it much more difficult for an attacker to exploit memory
corruption vulnerabilities. RELRO is a relocation read-only protection that helps protect against Global
Offset Table (GOT) overwrites.

If a binary is not compiled with the PIE flag, then it will not take full advantage of address space layout
randomization (ASLR) on Linux-like OSes. ALSR is a memory corruption mitigation technology that
randomizes the layout of process memory which increases the exploit complexity for an attacker.

If a binary is compiled with stack cookie protection, then it will make it more difficult for an attacker to
exploit stack-based buffer overflow memory corruption vulnerabilities.

The following commands show that the DeltaChat desktop application is not compiled with the PIE
flag, RELRO or with stack cookie protections:

checksec --file=DeltaChat-1.4.3.AppImage
RELRO STACK CANARY NX PIE RPATH RUNPATH Symbols

https://en.wikipedia.org/wiki/Collision_resistance
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://eprint.iacr.org/2019/459.pdf

Page 31 of 41
CONFIDENTIAL

REPORT

FORTIFY Fortified Fortifiable FILE
No RELRO No canary found NX enabled No PIE No RPATH No RUNPATH No Symbols
No 0 15 DeltaChat-1.4.3.AppImage

Recommended Remediation:

The assessment team recommends that all DeltaChat executables be recompiled with the PIE flag,
RELRO and with stack cookie protection. While there are small performance trade-offs when using
these protections, the performance impacts on Linux x86_64bit are typically negligible. A full
exploration of how to accomplish this within the confines of AppImage was out of the scope of this
assessment, but do note that these protections might not be comparable with that system.

References:

Position Independent Executable
Address Space Layout Randomization
XCode Enable PIE
GCC hardening for 16.10

L6: Unsafe Dereference Used

Description:

The DeltaChat application utilizes several unsafe calls. One such unsafe code block leverages the Pin
module which states that the new_unchecked() function could cause memory corruption issues in the
form of unsafe pointer operations.

The Pin Rust documentation states the following:

because we cannot guarantee that the data pointed to by pointer is pinned, meaning that the data will not
be moved or its storage invalidated until it gets dropped. If the constructed Pin<P> does not guarantee
that the data P points to is pinned, that is a violation of the API contract and may lead to undefined
behavior in later (safe) operations.

While in the codes current state it is probably not exploitable, as code changes values could be
changed or the code could become exploitable.

Affected Location

• deltachat-pentest/async-smtp/src/types.rs:116

Notice that on line 116, the unsafe keyword is used with the Pin module.

106 impl Read for Message {
107 #[allow(unsafe_code)]
108 fn poll_read(

https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://developer.apple.com/library/content/qa/qa1788/_index.html
https://wiki.ubuntu.com/SecurityTeam/PIE

Page 32 of 41
CONFIDENTIAL

REPORT

109 self: Pin<&mut Self>,
110 cx: &mut Context,
111 buf: &mut [u8],
112) -> Poll<io::Result<usize>> {
113 match self.project() {
114 MessageProj::Reader(mut rdr) => {
115 // Probably safe..
116 let r: Pin<&mut _> = unsafe { Pin::new_unchecked(&mut **rdr) };
117 r.poll_read(cx, buf)
118 }
119 MessageProj::Bytes(rdr) => {
120 let _: Pin<&mut _> = rdr;
121 rdr.poll_read(cx, buf)
122 }
123 }
124 }
125 }
126

Recommended Remediation:

The assessment team recommends refactoring all code to avoid unsafe calls, and more specifically to
avoid using the Pin unsafe new_unchecked() call. By refactoring unsafe Rust code, the risk of potential
memory corruption can be reduced or eliminated and memory corruption primitives can be minimized.
The DeltaChat application has already dramatically reduced its attack surface by implementing much of
their code in Rust. Removing more unsafe operations will only help mitigate additional risks.

References:

Pin Documentation

L7: Homograph Attacks Possible in Various Parts of DeltaChat

Description:

The DeltaChat application is vulnerable to a homograph attack. Homograph attacks occur when an
application supports UTF characters and an attacker can embed UTF characters to disguise URLs,
emails, or other sensitive information to trick a user into thinking that the content is from a trusted
party. For example, an attacker could potentially register a domain name and email address with a
UTF-8 character that resembles a trusted domain name or email address and leverage that in a social
engineering attack.

While the assessment team understands that UTF-8 is a desired feature in many locations of the code,
reducing the locations that use UTF-8 could reduce potential homograph attacks. The following are
locations that were spotted in code that utilize UTF-8:

https://docs.rs/async-std/1.5.0/async_std/pin/struct.Pin.html

Page 33 of 41
CONFIDENTIAL

REPORT

Affected Locations

• deltachat-core-rust/src/qr.rs:374

• deltachat-core-rust/src/dehtml.rs:145

• deltachat-core-rust/src/dehtml.rs:123

• deltachat-core-rust/src/dehtml.rs:94

• deltachat-core-rust/src/message.rs:320

• deltachat-core-rust/src/message.rs:309

• deltachat-core-rust/src/securejoin.rs:104

• deltachat-core-rust/src/securejoin.rs:106

• deltachat-core-rust/src/securejoin.rs:113

• deltachat-core-rust/src/location.rs:133

• deltachat-core-rust/src/location.rs:153

• deltachat-core-rust/src/location.rs:157

• deltachat-core-rust/src/location.rs:178

Some of these locations require UTF-8, but some of them could probably run without UTF-8 support.
This will need to be a design decision made by the developers and security engineers to determine
which locations to potentially alter.

The following source code in qr.rs demonstrates this issue:

371 /// URL decodes a given address, does basic email validation on the result.
372 fn normalize_address(addr: &str) -> Result<String, Error> {
373 // urldecoding is needed at least for OPENPGP4FPR but should not hurt in the other cases
374 let new_addr = percent_decode_str(addr).decode_utf8()?;
375 let new_addr = addr_normalize(&new_addr);
376
377 ensure!(may_be_valid_addr(&new_addr), "Bad e-mail address");
378
379 Ok(new_addr.to_string())
380

Steps to Reproduce

1. Go to https://www.the-qrcode-generator.com.
2. Under freetext insert DCACCOUNT:https://includesecurity.com[UTF-8_Characters]].
3. Download the QR code.
4. Open DeltaChat.
5. Click Switch Users.
6. Click Scan QR Code.
7. Start Wireshark and capture on the appropriate network interface.
8. Select the downloaded QR code.
9. Notice that a request is sent to the domain with UTF-8 characters.

https://www.the-qrcode-generator.com/
https://includesecurity.com[utf-8_characters/

Page 34 of 41
CONFIDENTIAL

REPORT

Recommended Remediation:

The assessment team recommends removing or reducing support for UTF-8 characters throughout the
application, particularly for QR Codes, email addresses, filenames, links, and domain names. This could
be done by creating a whitelist of appropriate characters for certain areas of the application. This will
reduce the potential that a user will trust a UTF-8 remote entity.

References:

Email Right to Left Override Aids Email Attacks
IDN Homograph Attack Wikipedia
Phishing with Unicode Domains

https://krebsonsecurity.com/2011/09/right-to-left-override-aids-email-attacks/
https://en.wikipedia.org/wiki/IDN_homograph_attack
https://www.xudongz.com/blog/2017/idn-phishing/

Page 35 of 41
CONFIDENTIAL

REPORT

L8: UI Alert Does Not Convey Potential for Confidentiality Disruption

Description:

The DeltaChat application utilizes PGP, QR Codes, and Autocrypt to establish end-to-end
communication. There are a series of controls within the application that verify cryptography to ensure
that passive or active man-in-the-middle attacks do not succeed. However, if an unsuspecting user
does not notice a change in key material (i.e. does not notice the “Changed setup for [email_address]”
message), it could mean that an attacker has automatically updated public key material. Future
messages from the established secure communication could be compromised or social engineering
attacks could be conducted.

This type of attack could occur if a user's email credentials are compromised. Email credentials could
be compromised using brute-force attacks, credential stuffing, compromise of a device, keylogging
(software or physical), side-channel/sensor/tempest attacks, email server attacks, or unencrypted
SMTP/IMAP. An attacker can use these email credentials, authenticate into the DeltaChat client and
send and receive encrypted messages to and from DeltaChat users.

Affected Locations

• deltachat-core-rust/src/securejoin.rs

• deltachat-core-rust/src/pgp.rs

• deltachat-core-rust/src/dc_receive_imf.rs

• deltachat-core-rust/src/peerstate.rs

Steps to Reproduce

1. Download and set up DeltaChat with user_a.
2. Download and setup DeltaChat with user_b.
3. Download DeltaChat for user_c.
4. Exchange public key material from user_a to user_b with Autocrypt or QR Codes.
5. Send chat messages from user_a to user_b and user_b to user_a.
6. Authenticate to DeltaChat with user_a's credentials on user_c's machine.
7. Send a message from user_b to user_a.
8. Notice that the message cannot be read yet from user_c's machine and that new key material is

being established.
9. Wait a small amount of time.
10. Send a message from user_c's machine to user_b.
11. Notice that the message Changed setup for [email_address_of_user_a] is displayed.
12. Notice that the following messages are decrypted.

Page 36 of 41
CONFIDENTIAL

REPORT

The following is an example of a simulated malicious user authenticating into a targeted user's account
via DeltaChat after a verified encrypted PGP communication has been established:

The following screenshot shows the targeted user's screen:

Page 37 of 41
CONFIDENTIAL

REPORT

Notice that a message displays that the setup has changed.

The following screenshot displays the DeltaChat client from the attacker's perspective after a few more
messages have been sent and a malicious file has been sent to the targeted user.

Recommended Remediation:

The assessment team recommends changing the Changed setup for.. message to messaging that
better conveys the potential disruption of expected confidentiality. Alternatively, different colors or
images could be used to represent the different levels of security. Additionally, a popup could be
displayed to the user to accept new communications for the new encryption keys similar to the
message that is delivered upon initial communication.

It is the understanding of the assessment team that the security levels of different messages would be
ordered in the following ways:

1. Manually verified PGP keys via QR Codes + TLS
2. Autocrypt + TLS
3. Manually verified PGP keys via QR Codes
4. Autocrypt
5. No PGP + TLS
6. No PGP

It is important that when a security level (as stated above by the assessment team) is decreased or
changed that the information is effectively communicated and presented to the end-user.

References:

Autocrypt
DeltaChat Specification

https://autocrypt.org/level1.html
https://github.com/deltachat/deltachat-core-rust/blob/master/spec.md

Page 38 of 41
CONFIDENTIAL

REPORT

INFORMATIONAL FINDINGS

I1: Potential Filesystem Path Traversal Sequence Which Would Allow Arbitrary File Write

Description:

The DeltaChat application triggers a file system write operation with user-controllable data which
could potentially leave the application vulnerable to path traversal attacks. In vulnerable systems, an
attacker could provide the path traversal sequence (i.e., dot-dot-slash, ../) as part of their input to
move outside the expected target directory and cause file writes elsewhere on the file system. This
could allow the attacker to overwrite arbitrary files on the desktop version of DeltaChat and gain
remote code execution.

Note: The DeltaChat application does protect against / and \ characters by normalizing the filenames.
This added protection prevented the assessment team from overwriting critical operating system
related files. However, the assessment team is including this information to provide additional
defense-in-depth informational findings to help further improve DeltaChat security.

Affected Locations

• deltachat-core-rust/src/mimeparser.rs

• deltachat-core-rust/src/blob.rs

The following source code located in deltachat-core-rust/src/mimeparser.rs displays that the code
looks for KML files, and if the file contains a location in the name or message in the name, it
automatically parses it. It then writes the file.

698 if decoded_data.is_empty() {
699 return;
700 }
701 // treat location/message kml file attachments specially
702 if filename.ends_with(".kml") {
703 // XXX what if somebody sends eg an "location-highlights.kml"
704 // attachment unrelated to location streaming?
705 if filename.starts_with("location") || filename.starts_with("message") {
706 let parsed = location::Kml::parse(context, decoded_data)
707 .map_err(|err| {
708 warn!(context, "failed to parse kml part: {}", err);
709 })
710 .ok();
711 if filename.starts_with("location") {
712 self.location_kml = parsed;
713 } else {
714 self.message_kml = parsed;
715 }
716 return;
717 }
718 }
719 /* we have a regular file attachment,
720 write decoded data to new blob object */
721
722 let blob = match BlobObject::create(context, filename, decoded_data).await {

Page 39 of 41
CONFIDENTIAL

REPORT

723 Ok(blob) => blob,
724 Err(err) => {
725 error!(
726 context,
727 "Could not add blob for mime part {}, error {}", filename, err
728);
729 return;
730 }
731 };
732 info!(context, "added blobfile: {:?}", blob.as_name());

The BlobObject create() function resides in the deltachat-core-rust/src/blob.rs file. It performs a
sanitization and then creates a new file.

51 pub async fn create(
52 context: &'a Context,
53 suggested_name: impl AsRef<str>,
54 data: &[u8],
55) -> std::result::Result<BlobObject<'a>, BlobError> {
56 let blobdir = context.get_blobdir();
57 let (stem, ext) = BlobObject::sanitise_name(suggested_name.as_ref());
58 let (name, mut file) = BlobObject::create_new_file(&blobdir, &stem, &ext).await?;
59 file.write_all(data)
60 .await
61 .map_err(|err| BlobError::WriteFailure {
62 blobdir: blobdir.to_path_buf(),
63 blobname: name.clone(),
64 cause: err.into(),
65 })?;
66 let blob = BlobObject {
67 blobdir,
68 name: format!("$BLOBDIR/{}", name),
69 };
70 context.emit_event(Event::NewBlobFile(blob.as_name().to_string()));
71 Ok(blob)
72 }
73
74 // Creates a new file, returning a tuple of the name and the handle.
75 async fn create_new_file(
76 dir: &Path,
77 stem: &str,
78 ext: &str,
79) -> Result<(String, fs::File), BlobError> {
80 let max_attempt = 15;
81 let mut name = format!("{}{}", stem, ext);
82 for attempt in 0..max_attempt {
83 let path = dir.join(&name);
84 match fs::OpenOptions::new()
85 .create_new(true)
86 .write(true)
87 .open(&path)
88 .await
89 {
90 Ok(file) => return Ok((name, file)),
91 Err(err) => {
92 if attempt == max_attempt {
93 return Err(BlobError::CreateFailure {
94 blobdir: dir.to_path_buf(),
95 blobname: name,
96 cause: err,
97 });
98 } else {

Page 40 of 41
CONFIDENTIAL

REPORT

The sanitise_name() function performs the following checks:

309 fn sanitise_name(name: &str) -> (String, String) {
310 let mut name = name.to_string();
311 for part in name.rsplit('/') {
312 if !part.is_empty() {
313 name = part.to_string();
314 break;
315 }
316 }
317 for part in name.rsplit('\\') {
318 if !part.is_empty() {
319 name = part.to_string();
320 break;
321 }
322 }
323 let opts = sanitize_filename::Options {
324 truncate: true,
325 windows: true,
326 replacement: "",
327 };
328
329 let clean = sanitize_filename::sanitize_with_options(name, opts);

An additional check in blob.rs for some file operations can be found in the following code snippet:

345 fn is_acceptible_blob_name(name: impl AsRef<OsStr>) -> bool {
346 let uname = match name.as_ref().to_str() {
347 Some(name) => name,
348 None => return false,
349 };
350 if uname.find('/').is_some() {
351 return false;
352 }
353 if uname.find('\\').is_some() {
354 return false;
355 }
356 if uname.find('\0').is_some() {
357 return false;
358 }
359 true
360 }

If there was a bypass in the sanitization or validation of blob names, then an attacker could achieve
remote code execution. While the assessment team was not able to bypass the filters in the timebox of
this engagement. It was noticed that UTF-8 characters were allowed in filenames and a file that started
with ..\ wrote a file to the filesystem that was a random negative number.

Recommended Remediation:

The assessment team recommends creating a whitelist of acceptable characters and not allowing or
converting UTF-8 characters in filenames. SELinux or Apparmor policies could be created to prevent
writes to locations outside of the application directory. In addition, seccomp or sandbox filters could be
leveraged to prevent the application from writing outside of its appropriate directory.

Page 41 of 41
CONFIDENTIAL

REPORT

References:

OWASP File System Page
Rust syzcallz-rs

I2: Additional Security Considerations (Quantum Computing, Traffic Flow Confidentiality, and

DeltaChat Attack Surface Reduction)

Description:

DeltaChat relies on public key exchanges and symmetric encryption of messages to provide users end-
to-end encryption. This security is provided by OpenPGP. While there are no known practical
cryptanalysis attacks that fully break public key algorithms like RSA2048, there could be potential
attacks in the future (e.g. quantum computing). Attacks on cryptographic algorithms usually only get
better. There are some open defense strategies proposed and implemented to defend against
quantum computing attacks. Some of these defenses are documented within the source code and
published papers of the WireGuard VPN product and protocol.

Traffic Flow Confidentiality (TFC) is a feature that can provide additional protection against statistical
analysis of message metadata (e.g. size of message, time sent, destination, source, etc.). For example,
researchers have presented statistical attacks against TLS and Google Maps that showed that they
could predict the geolocation of where someone was searching based on message size, IP destination,
IP source and message timing with relative decent accuracy. Random data or padding could be
introduced to a message to help mitigate against this type of threat. For example, random spaces could
be added to the beginning or end of a cleartext message to make it more difficult for an attacker to
perform statistical analysis on the encrypted message.

Recommended Remediation:

The assessment team suggests researching and implementing protections against quantum computing
and implementing TFC.

The assessment team also suggests adding an option or a set of options to decrease the attack surface
of the DeltaChat application. For example, options to turn off file transfers, turn off group messaging,
disable parsing of KML files, only allow manual QR PGP key exchanges and drop all other messages
could be examples of options to provide users with reduced attack surface. To reduce that attack
surface unsafe Rust code could be removed or rewritten.

References:

WireGuard – Optional Pre-shared Symmetric Key Mode
Traffic Flow Confidentiality in IPSec Protocol and Implementation

https://www.owasp.org/index.php/File_System#Path_traversal
https://github.com/kpcyrd/syscallz-rs
https://www.wireguard.com/papers/wireguard.pdf
https://link.springer.com/content/pdf/10.1007%2F978-0-387-79026-8_22.pdf

